LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2018

16/17/17PMT1MC04 - COMPUTER ALGORITHMS

	Date: 01-11-2018 Dept. No. Time: 01:00-04:00		Max. : 100 Mar	·ks	
	Answer ALL the Questions: a) State a procedure to receive <i>n</i> numbers and print the average of <i>n</i> numbers. Find the number of steps per execution of the statements. OR				
	b) Define a stack. State Algorithm Add(item)) for inserting elements int	o stack. (5)		
	c) Explain a Binary Search Tree with an example. Write an algorithm to insert an element with linto a Binary Search Tree. (15) OR				
	d) Write algorithm HeapSort. Simulate it on	-	34). (15)		
2.	a) Give the procedure to find the k^{th} smallest	element. OR	(5)		
	b) If the time for merging operations in Algoromputing time when $n = 2^k$.	orithm MergeSort is propo	rtional to n , then find the (5)		
	c) State algorithm BinSearch. Simulate it on $A(1:9) = (14, 25, 37, 62, 71, 83, 87, 90, 101)$ to locate x when $x = 40$, $x = 25$, $x = 90$. Draw the binary decision tree when $n = 9$. (15)				
	d) Write algorithm QUICKSORT. Simulate $A(1:8) = (46, 84, 3, 95, 10, 65, 73, 44)$.	it on	(15)		
3.	a) Give the greedy method control abstraction	n for subset paradigm. OR	(5)		
	b) Let J be a set of k jobs and $\sigma = i_1 i_2 \dots i_k$ a Prove that J is a feasible solution if and o violating the deadline.				
	c) State procedure GREEDY-KNAPSACK a $p_2 \dots p_5$) = (24, 25, 15, 8, 18), ($w_1, w_2 \dots w_5$)	1	= 5 and $m = 15$.	$(p_1,$	
		OR	(15)		
d) Explain the problem 'Optimal Merge Patt 10 files of length 45, 12, 61, 35, 84, 20, 1		rn' with an example. Give	procedure Tree(n). Simulate (15)	it on	
4.	a) Give the recursive formulation of inorder,	preorder and postorder tra	eversals. (5)		
	b) State Algorithm Backtrack(<i>k</i>).		(5)		
c) Explain n -queens problem. Give an algorithm to find the solution to n -queens problem (15)					
		OR			

	d) State algorithm SumOfSub. Simulate it on $w = \{2, 5, 6, 8, 10, 12\}$ and $m = 20$. Also draw the portion of state space tree generated by SumOfSub. (15)		
5.	a) Define the terms: P , NP , polynomial complexity, polynomially equivalent. (5) OR		
	b) Give a nondeterministic algorithm to check whether a propositional formula is satisfiable. (5)		
	c) Explain clique decision problem. Prove that clique decision problem is NP-complete. (15)		
OR			
d) (i) State Cook's theorem.			
(ii) Define a node cover for a graph G . Give an example.			
	(iii) Prove that the clique decision problem reduces to the node cover decision. $(3+3+9)$		
